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(a) A many-sided region becomes quads
by incircle-refinement.
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offset median 

(b) A reflex quad becomes five convex
quads by median template refinement.
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Angle bound summary.

For a quad angle �� after median refinement, from the prior discussion we see that
A� has the smallest lower bound and �DAcC has the largest upper bound. The
smallest angles arise regardless of incircle-refinement, but the biggest angles arise
when one of the triangles in the pair was previously incircle-refined.

• For � = 1, we have �� � [10.8�, 173.3�].

• For � = 2, we have �� � [7.7�, 173.6�].

Table 4: Quad bounds after both incircle and median refinement.

� �� �e

1 min 10.8� 0.1rs

max 173.3� 2rs

2 min 7.7� 0.2rs

max 173.6� 4rs

(c) Provable quality bounds with no heuristics,
final quad angles (2�) and edge lengths (2e).

Fig. 6: Refining monochromatic triangles and reflex quads into convex quads with shape and size guarantees. In 6a, the green many-sided polygon
is divided into quads with two green and two red edges. Adjacent monochromatic triangles would form a quad with four red edges. Original
monochromatic edges are dashed black, original bichromatic edges are green, introduced bichromatic edges are red or solid black (except in 6b the
starting triangles might have come from incircle refinement).

triangles of the quad are refined in the same way, then glued together along the common quad diagonal. The lines of
the refinement are parallel to the median lines, but two are offset 1/5 of the way along the quad diagonal.

We have provable bounds on the angles and edge lengths in the triangulation and subsequent quadrangulations. These
are summarized in the table in Fig. 6c, and their lengthy derivations are in the extended version of this paper, available
online as a Sandia tech report [1]. We provide some intuition about why they hold here. The initial triangles from
the packing are well-shaped by the standard reasons for (two-radii) maximal Poisson-disk packing [18] and Delaunay
refinement [12] algorithms. Incircle refinement halves some triangle angles, but these angles are always combined
with another one in a quad. It places three moderately large angles in the center of a triangle, up to 150�. The refined
edges can be as small as about half of an original edge. Median refinement can cut some of the triangle angles by
about a third. Because the original triangulation had no extremely large angles (at most 120� in the ↵ = 1 case), the
quad reflex angles are not too large, and median refinement will always produce convex quads. The median template
can introduce some large angles where the offset medians intersect the quad diagonal. In the worst case they are only
about 6� away from being 180�. It can also introduce some fairly short edges. While these bounds are not great, they
do provide a reasonable starting point for smoothing or other mesh improvement techniques.

3.2. Heuristic improvements

For boundary sampling, we get better mesh quality if we allow the color of disks at domain vertices to be red or blue,
in order to get the spacing closer to the ideal

p
2rb. (We still require alternating disk colors along each domain curve.)

Also, curves with vertices of different colors can be advanced farther, so the structured patches are bigger.

We have two heuristics for reducing the frequency of problematic cells, and two for resolving them. For frequency
reduction, we increase the parameter ↵. This is inspired by the diagonal of a square (monochromatic edge) being
longer than its side (bichromatic edge). A value of

p
2 is a square diagonal and coincides with the value used in

multi-class sampling [17], so it is the first value we tried. Larger values worked better, because they generated fewer
monochromatic triangles; see the red and blue lines of Fig. 7a. Any ↵ > 1 actually degrades the theoretical quality
guarantees; but in practice it helps, and we discovered that ↵ = 2.5 works best. A second, very effective strategy is to
switch colors to reduce the number of monochromatic triangles, down to 2%; see the purple and green lines of Fig. 7a.
A nice feature is that color switching does not change the point positions. However, if ↵ > 1, it reduces the theoretical
quality guarantees farther. One heuristic that did not help was keeping the number of red and blue disks continuously
balanced by assigning the initial color to be the underfilled color.

A heuristic to resolve a monochromatic triangle is Delaunay refinement with the opposite color, followed by Delaunay
retriangulation; see Fig. 7b. This heuristic has some small chance of creating a new, smaller monochromatic triangle,
requiring further refinement. If it terminates, it has the nice property that all edges are Delaunay. A strategy to resolve
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Outline 

•  Algorithm on one page 
•  Two-coloring idea 

–  Contrast to Triangle Pairing 
–  Even-sided polygons 
–  Templates for provable quality (appendix on website) 

•  Fixing by constrained incircle refinement 
–  QTran 

•  Constrained median refinement 
•  (Random Algorithm) 

–  Well-spacedness properties, achieved by 
–  Delaunay refinement triangulation as input 
–  MPS (sphere packing) for provable quality triangulation 

•  center director asks Mohamed, “can you do this for quad meshes?” no, but two years later... 
–  Generating multi-class blue noise 
–  Ideal spacing 
–  Heuristics for better quality 

•  Example meshes 
–  Dare to show raw output, before cleanup 

•  Advancing Front Algorithm 
–  Row, column, repeat. Reseed. 

•  Conclusions 
–  Three centers: Circumcenter, Incenter, Centroid 

•  orthocenter feeling left out 
–  Some quad meshes are not two-colorable 
–  Not for hex meshes 



Convert tri mesh to quads 
One-slide Algorithm 

•  Generate (or given) well-spaced points 
•  Delaunay triangulate 
•  Color points red or blue 
–  intersperse colors 

•  Discard red-red and blue-blue edges 
•  Quads mostly 
–  good quality, some large angles 

•  6, 8, 10 sided polygons sometimes 
–  constrained incircle refinement 
–  median template for reflex quads 

•  All quads with provable quality 

•  Coloring and position heuristics 
improve quality in practice 
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•  Quads mostly 
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•  Coloring and position heuristics 
improve quality in practice 



Why does this work? 
• Any planar quad mesh can be two-colored 
–  converse, convert a two-colored graph into quads 

•  Two-coloring makes even-sided cells 
–  4, 6, 8, 10... 

• Any triangulation of 6+ polygon 
 with monochromatic edges  
 has a monochromatic triangle 
–  avoid or remove mono-triangles for all quads 

•  Input tri good quality 
–  template quads good quality  

(proofs in 8 page appendix, available online) 
•  http://www.cs.sandia.gov/~samitch/papers/delaunayquadproof.pdf 
•  google: mitchell sandia. click on papers 

This is the only hexagon ���
  triangulation using only ���
    red edges,	


  since every blue vertex must ���
    be in an ear	





Incircle refinement details 

2n-gon has n-2 mono-triangles	


  6 -> 1	


  8 -> 2 	


10 -> 3...	



adjacent mono-triangles OK	


  makes a red quad	



Q-TRAN: Transform Triangular Meshes into Quadrilateral Meshes 27

(a) Input (b) Output

Fig. 2. Topology clean-up using face collapse to reduce the number of irregular
vertices. A quadrilateral face is collapsed converting two irregular vertices into a
regular one. The triangular tessellation is shown using dotted lines in both figures.

For the second group, the quality of the input tessellation is preserved
by construction, where an edge from Group B would be reclassified into an
edge from Group A if it causes a violation to the angle bounds of the input
tessellation. However, we note that throughout the test problems that we have
used in this paper we have never encountered this case. Further investigations
are required to prove that this case can ever exists.

4 Analysis of Q-Tran Performance

In order to test the performance of Q-Tran, we generated a sequence of tri-
angular tessellations covering a planar hexagon. A triangular tessellation,
Mi, i = 2, 3, ..., 7, is obtained by isotropic refinement of the previous tessel-
lation, Mi−1, where each triangular face is split into four triangular faces.
Q-Tran is then utilized to convert each tessellation in this sequence into an
all-quadrilateral mesh. Note that all the internal edges in any tessellation
here are regular edges, which means that random Topology clean-up will be
applied everywhere in the mesh at the end of the algorithm. This should
represent a worst case scenario for Q-Tran with regard to the time of execu-
tion, given that the algorithm should have the same performance for planar
and curved surfaces. The results of this test are summarized in Table 1. As
we notice from these results, random clean-up operations might increase the
relative number of the generated quadrilaterals in some cases to be as much
as twice the number of the faces in the input tessellation. All of the tests
performed in this section were performed using a 32-bit operating system
and 2.0 GHz (T7250) processor with 2.0 GB of memory. Q-Tran was imple-
mented in a generic function so the performance might vary based on the
utilized datastructure.

  Compare to Q-TRAN	



halves angles	


shorter but bounded edges	
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structured patches and irregular vertices, switching between the structured and random algorithms in a more nuanced
way.

While our output has provable quality, the bounds are not that good. We would like to discover ways to achieve
better quality in theory and practice. This may involve some combination of different point placement algorithms, and
different monochromatic triangle and large-angled quad resolution algorithms, as well as standard quad smoothing
and cleanup.
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Pairing different than two-coloring 
(unless all-quad without refinement) 

6-sided polygon	



The stuck configurations are very different	
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Unpaired triangles	
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All-quad	


Perfect Matching <-> Two-coloring	



Triangle Maximal Matchings	


Vertex Two-colorings	



All-quads	


immediately	



2n-sided polygons,	


containing mono-triangles	

Isolated, left-over	



triangles	
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structured patches and irregular vertices, switching between the structured and random algorithms in a more nuanced
way.

While our output has provable quality, the bounds are not that good. We would like to discover ways to achieve
better quality in theory and practice. This may involve some combination of different point placement algorithms, and
different monochromatic triangle and large-angled quad resolution algorithms, as well as standard quad smoothing
and cleanup.
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Impossible topology���
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pairing or coloring	



global refine chords	


    steering heuristics	



local template	


deterministic, provable quality	
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Coloring	



must make a change	



Blossom-quad	


local refinements	



OK, it works and is different. Why would you want to use it? 
Locality! 



Why two-coloring vertices?  
Why not matching triangles? 

swap diagonal	



	

cascade of swaps	


-  local changes have global scope	


     alternative is local refinements 	



Pairing	



star neighborhood of starred vertices	


+ local changes have local scope	



Coloring	



want a change	





Why two-coloring vertices?  
Why not matching triangles? 

Matching triangles 
+ match for quad quality 
–  slow 

- global matching alg 
- quadratic runtime 

–  rare isolated tri (unmatched) 
tri 1->3 quad refine 
   + fixed vertices 
   - global propagation 

       + alternative local refine 
    (complicated, several rules) 

–  local pair swap  
global cascade 

–  global difficulties 

Two-coloring vertices  
–  colors don’t measure quality 
+ fast 

+ local coloring alg 
+ near linear runtime 

–  rare isolated tri (monchromatic) 
   tri 1->3 tri refine 
- adds vertices 
+ no propagation 
 
 

+ local color flip  
   local change 
+ local difficulties 

“-” means a negative feature	


“+” means a positive feature	





Interval Assignment Interpretation 

• Two-coloring is a local assignment  
– ensures even-number of boundary edges 

inherent global constraint for quad meshes 
• Now let’s use coloring for spatial positions 



Back to the algorithm 
•  Generate (or given) well-spaced points 
•  Delaunay triangulate 
•  Color points red or blue 
–  intersperse colors 

•  Discard red-red and blue-blue edges 
•  Quads mostly 
–  good quality, some large angles 

•  6, 8, 10 sided polygons sometimes 
–  constrained incircle refinement 
–  median template for reflex quads 

•  All quads with provable quality 

•  Coloring and positions improve  
quality in practice 

We can take any Packing  
or Delaunay Refinement 
triangulation and  
two-color vertices arbitrarily. 
 
We can do better! 



Sphere packing,  
better control than Delaunay Refinement 

•  What is MPS? Sphere packing, output of  
–  Insert random points 

•  With “Poisson” process, and rejection 

Ω
x4?	



Bias-free: ⌥xi ⇧ X, ⌥� ⌅ Di�1 :

P (xi ⇧ �) =
Area(�)

Area(Di�1)
(1a)

Empty disk: ⌥xi, xj ⇧ X,xi ⌃= xj : ||xi � xj || ⇤ r (1b)
Maximal: ⌥x ⇧ D, �xi ⇧ X : ||x� xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4⇥ faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.

•  We claim in practice, sphere packing  
has better (direct) spacing control 

Bias-free: ⌥xi ⇧ X, ⌥� ⌅ Di�1 :

P (xi ⇧ �) =
Area(�)

Area(Di�1)
(1a)

Empty disk: ⌥xi, xj ⇧ X,xi ⌃= xj : ||xi � xj || ⇤ r (1b)
Maximal: ⌥x ⇧ D, �xi ⇧ X : ||x� xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4⇥ faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.

Bias-free: ⌥xi ⇧ X, ⌥� ⌅ Di�1 :

P (xi ⇧ �) =
Area(�)

Area(Di�1)
(1a)

Empty disk: ⌥xi, xj ⇧ X,xi ⌃= xj : ||xi � xj || ⇤ r (1b)
Maximal: ⌥x ⇧ D, �xi ⇧ X : ||x� xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4⇥ faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.

Provable angle bounds by Central Angle Theorem	



•  Delaunay Refinement 
–  build quality, packing results 
–  If triangle has bad quality 

•  Then add a point 
–  On termination, we have a sphere packing 

•  MPS 
–  build packing, quality results 
–  If packing is not maximal 

•  Then add a point 
–  On termination, the Delaunay triangulation will 

have good quality. 
 

•  Equivalent in theory 
bad quality = empty sphere is large (non-maximal) 

              compared to edge length (empty-disk) 

•  sphere packing algorithms are practical, our 
2011-2013 work  

•  see Dafna Talmor thesis for quality theory 
 



Reducing the Frequency of Mono-tris 
Sphere Packing with Two Colors 

no red points	



no blue points	



Blue-blue farther than blue-red	


Mono-triangles less likely	


  can fit opposite ���
  color inside	



discard long diagonals ���
for square-like quads	





Reducing the Frequency of Mono-tris 
Two-radii Plus Color Switching 

no red points	



no blue points	



Ratio 2.5 works well, 	


> sqrt(2) square diagonal	



Color switching works even better!	


  if mono-tri, change color of one vertex	



switching, stubborn 2%	


	


	





Resolving Stubborn Mono-tris 
Circumcircle Delaunay Refinement 

Removes the mono-tri 
  Rare cases produce another mono-tri,  
  requiring more refinement... 
 



Avoiding Reflex Quad 
• Median-refinement template is provably good 
– but not that good, 10-174 degrees 

• Practical alternative 
–  remove vertices and resample locally 
– works every time in practice 

45°	



15°	



45°	



30°	



60°	



15°	



120°	



30°	



worst case: 	


  incircle followed by reflex refine	



1/5	



median	





Heuristic Summary 
• Reduce frequency of mono-tris 
– Two-color multiclass sampling with radii ratio 2.5 
– Color switching 

• Resolve mono-tris 
– Delaunay incircle refinement 

• Avoid reflex quads 
– Local resampling 

•  Traditional cleanup may also be applied post-process 
–  we provide ok quality, convex-element starting point 



Curved Surfaces 
Mesh Size may Vary 
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4. Results

Unit square with periodic boundary conditions. We generated random quad meshes of a periodic square. Fig. 9
shows the quad quality and Fig. 10a shows the disks and mesh. Fig. 11 shows that our output has blue noise, and
studies the effect of varying ↵ on the spectra.

(a) Random periodic unit square with rs = 0.02 and ↵ = 2.5.

14 Ebeida et al.

3.5 Non-convex Quad Midpoint Refinement

If any quad has an angle greater than 170� then we split it into five quads; see
Figure 11b. Using these two constructions, we get all quads, with edge lengths at
least xxxx, and all angles between xxx and yyyy.

4 Results

4.1 Unit Square with Periodic Boundary Conditions

We generated random quad meshes of a periodic box. Figure 12a shows an example
output for � = 2.5. Figure 12 shows typical quad element quality for � = 2.5. Fig-
ure 13 studies the effect of varying � on the spectra, both before and after monochro-
matic triangle refinement.

(a) Periodic unit square, with rs = 0.02
and � = 2.5, after refining monochro-
matic triangles.

Valence Number 
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6 
7 
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Angle 

0.51 2.51 4.51 6.51 8.51 10.51 

Edge length 

(b) Varying sizing function on
Fertility (5k points) using � =
2.5

4.2 Non-convex Domain with Uniform Sizing Function

In Figure 14 we compare our advancing front algorithm with the paving algorithm
from Cubit, a production finite element mesh generator. See Figure 15 for more ex-
amples of our output.

(b) Varying sizing function on Fertility, 5k points, ↵ = 2.5.

Fig. 10: Delaunay quadrangulations of periodic or curved domains.

Non-convex domain with uniform sizing function. In Fig. 12 we compare our advancing front algorithm with
the paving algorithm from Cubit. Cubit’s output is superior in some respects, but this illustrates that our quality is
reasonable enough that a production capability could be built on it. See Fig. 13 for more planar examples.

Curved surface with uniform sizing function. Our algorithms extend to curved surfaces. For the random algorithm,
instead of a background grid of squares, we start with a (graphics) triangulation of the curved surface. These triangles
are the initial active pool. To generate the candidate sample, a triangle is chosen uniformly by area, then we generate
a uniform-random point inside it. Some large triangles might be able to contain more than one sample, so we must
check before discarding it. We use the Euclidean distance for simplicity, which is an approximation. When advancing
the iteration and refining the active cells, we split each triangular cell into four triangles. We also have an advancing
front variation for curved surfaces. The results of the random algorithm are shown in Fig. 14, and the advancing-front
algorithm in Fig. 15.

Curved surface with varying sizing function. Our random algorithm can use a spatially-varying sizing function
over a curved surface. We require that we can obtain the sizing function value for any random point on the surface, for
example by interpolation in its containing triangle. As before, we pick a random triangle and chose a random point
from it. We define rb to be the sizing function value at the point, and rs = rb/↵. These are used to define conflict
between same-colored and opposite-colored points as before. Since the sizing function varies the radius for the point
and a neighboring point may be different; we define disk conflict by the Smaller Disks criterion [18]. That is, the
disks are in conflict if the center of the larger disk lies inside the smaller disk. When checking if refined child cells
are covered the only change is that the rb and rs of each nearby sample is different. The mesh for the Fertility model
is shown in Fig. 10b.

5. Conclusions

We have introduced a novel concept, a bichromatic Delaunay quadrangulation, based on assigning points one of two
colors, and only retaining the Delaunay edges between opposite-colored points. In spatially-isolated cases, constrained
incircle refinement is needed to produce all quads, without any six-or-more sided cells. Template refinement or re-
sampling is needed in spatially-isolated cases to remove large angles. For the best quality, we define two radii around
each point, so that same-colored points must be farther apart than opposite-colored points. We have demonstrated

slowly varying 	


sizing function	



fine	



coarse	





Fourier Spectrum 

vertex-vertex	


distances	



Fourier transform	



Some graphics applications	


rely on random positions	


to avoid artifacts	





Random 
reflected image	


produce mesh above���
disks below 	





Structured 
reflected image	


produce mesh above���
disks below 	





Advancing Front for Structured 

• Advance front 
– columns, rows of disks set spacing and color 
–  fill front collision zones by random algorithm 



Advancing Front for Structured Advancing Front for Structured 

add blue disks	


centered at intersections of ���

large blue circles	



This is the closest we can place blue disks ���
and not violate the blue-blue separation distance	



no blue points allowed 	


in blue shaded	





Advancing Front for Structured 

add red disks	


centered at intersections of ���

large red circles	





some gaps arise because 	


some red and blue disks would	


violate the separation distances,	



don’t add those	



no red points	



no blue points	



some gaps arise 	


from diverging fronts	



e.g. large blue circles didn’t intersect	





pyramid-like termination	





horizontal advancement	



can continue vertical advancement	





fill large gaps with random algorithm	


small gaps are provably OK	



Most gaps are where fronts collide	





Sharp Corners 

Add opposite-colored midpoint ���
  on mono-edges	


exploit alternating boundary colors	





Adv. Front Wedge 

(example of a coarser mesh	


than the disk pictures)	
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Qualitative comparison  
to a production code 

Cubit paver Two-color adv. front  
no cleanup 



Qualitative comparison  
to a production code 

Cubit paver Two-color “biased” adv. front  
no cleanup 

32 52 72 92 112 132 

Cubit 

 Biased Adv. Front 

Angle 

1.3 1.8 2.3 2.8 3.3 

Cubit 

Biased Adv. Front 

Aspect Ratio 

angles	

 aspect ratio	





Closing Thoughts 
• Three centers: Circumcenter, Incenter, Centroid 

Incenter for mono-tris	


template	



1/5	



median	
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Circumcenter for mono-tris	


heuristic	



Centroid (median) ���
for reflex quads	



Orthocenter feeling ���
left out	



deviantArt Free Ai Vector Smiley Pack	


by MathieuBerenguer	





Closing Thoughts 
• We create two-colorable quad meshes 
– For non-disk domain topologies, 

some given quad meshes are not two-colorable 

odd-cycle of edges	


non-disk domain topology	

 ?	



?	





Closing thoughts 

– Can we create hex meshes by coloring? 
 
no. 
 
2d, a chain of edges of even length -> 2n-gon 
3d, a chain of edges of even length  

 != edge cycles bounding hexes 
 
Pairings: combine tets to form hexes? 
 
Closest idea: graphics and meshing literature on 3d 
cross-fields and connecting hex-duals 

– Can we create hex meshes by coloring? 
 
no. 



Reasonable Extensions 
• Questions 
– Varying-size advancing front? 
– How fast can we vary the size? 

• Bounds for two-radii DT known 



Summary 
•  Three key ideas 
–  Graph theory, two-coloring of vertices 
–  Random sphere-packings (better control than Delaunay refine) 
–  Advancing front 

•  Features 
– Robust 
–  Simple 
–  Local 
–  Provable quality 
– Heuristics for good quality in practice 
– What more do you want? 

• Quality is reasonable before cleanup 
–  someone could build a production tool based on this 
–  add traditional cleanup 


